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The degree of approximation in Lp-spaces by positive linear operators is
estimated in terms of the integral modulus of smoothness. It is shown that the con-
jectured optimal degree of approximation is not attained in the class of functions
having a second derivative belonging to Lp . � 1996 Academic Press, Inc.

Let [Ln] be a uniformly bounded sequence of positive linear oper-
ators from Lp[a, b] into Lp[c, d], 1�p<�, a�c<d�b. Let *np=
maxi=0, 1, 2 &Ln(ti, x)&xi&p and assume *np � 0 as n � �. The conjectured
optimal estimate for the rate of convergence to f # Lp[a, b] by [Ln( f )] is

& f&Ln ( f )&p�Cp (& f &p *np+w2, p( f, *1�2
np )), (1)

where the Lp norm on the left is taken over [c, d], cp>0 is independent
of f and n, and w2, p denotes the second-order modulus of smoothness of f
measured in Lp[a, b]. The estimate, (1), implies [4, p. 293],

& f&Ln( f )&p�Cp(& f &p *np+wr, p( f, *1�r
np )), (2)

where r�3 is an integer and wr, p is the r th order modulus of smoothness
of f measured in Lp[a, b].
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Berens and DeVore [1] have shown that (1) is valid for positive linear
contraction operators from L1[a, b] to L1[a, b]. The purpose of this paper
is to show that (2) is always valid while (1), in general, is not.

Define the sequence [Ln] from Lp[0, 1] to Lp [0, 1] by

Ln ( f (t), x)={
f (x) if }x&

1
2 }>

1
n

n
2 |

1�n

&1�n
f (x+u) du if }x&

1
2 }�

1
n

.

An easy computation shows that *np= 1
3(1�n)2+1�p. Choose f (x)=

(x& 1
2)+. Then it is easy to verify that &Ln((t& 1

2)+ , x)&(x& 1
2)+&p is

asymptotically equivalent (n � �) to (1�n)1+1�p.
If (1) were valid then, since w2, p((x& 1

2)+ , $)=O($1+1�p)($ � 0+),

&Ln ((t& 1
2)+ , x)&(x& 1

2)+& p=O(* (1�2)(1+1�p)
np ) (n � �)

=O(n&(1+3�2p+1�2p2)) (n � �)

=O(n&1(1+1�p)) (n � �),

which is a contradiction.
In [2], Berens and DeVore consider quantitative estimates for the

degree of Lp approximation by positive linear operators in a multidimen-
sional setting. A consequence of Theorem 3 of [2] for the one-dimensional
case is, for any f # Lp[a, b],

& f&Ln( f )&p�Cp(& f &p *2p�(2p+1)
np +w2, p( f, * p�(2p+1)

np )). (3)

The example given above can also be used to show that (3) is sharp. In
[5] the authors show that (3) can be improved for certain classes of
operators.

Let L (r)
p [a, b] denote the linear space of functions which together with

their first r&1 derivatives, are absolutely continuous on [a, b] and are
such that the r th derivative is in Lp[a, b]. We have

Theorem. Let [Ln] be a uniformly bounded sequence of positive linear
operators from Lp[a, b] into Lp[c, d], 1�p<�, a�c<d�b. If r�3 is
an integer, then, for f # Lp[a, b],

& f&Ln( f )&p�Cp(& f &p *np+wr, p( f, *1�r
np )),

where the Lp norm on the left is taken over [c, d], Cp>0 is independent of
f and n, and wr, p is the r th order modulus of smoothness of f measured in
Lp[a, b].
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Proof. Let f # L (r)
p [a, b]. Then for t # [a, b] and x # [c, d],

f (t)& f (x)= f $(x)(t&x)+|
t

x
(t&u) f "(u) du.

Thus,

|Ln(( f (t)& f (x)), x)|�& f $&� } |Ln((t&x), x)|

+& f "&� } Ln((t&x)2, x). (4)

By [3, Theorem 3.1], there is a constant, kp>0, such that, for
j=0, 1, ..., r&1,

& f ( j)&��kp(& f &p+& f (r)&p). (5)

Consequently, by (4) and (5), for f # L (r)
p [a, b],

& f&Ln( f )&p�& f &� } &Ln(1, x)&1&p+&Ln(( f (t)& f (x), x)&p

�& f &� } &Ln(1, x)&1&p+& f $&� } &Ln((t&x), x)&p

+& f "&� } &Ln((t&x)2, x)&p

�kp(& f &p+& f (r)&p) *np .

An application of Peetre's K-functional [4, p. 300] completes the proof of
the theorem.

Remarks. The above theorem, for p=1, is a special case of Theorem 2
of [2]. The example used to show that (3) is sharp appears in [2]. It is
used there for a different purpose.
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